Learn Quantum Computing with Python and Q#

Learn Quantum Computing with Python and Q#: A hands-on approach

eBook Details:

  • Paperback: 384 pages
  • Publisher: WOW! eBook (June 22, 2021)
  • Language: English
  • ISBN-10: 1617296139
  • ISBN-13: 978-1617296130

eBook Description:

Learn Quantum Computing with Python and Q# demystifies quantum computing. Using Python and the new quantum programming language Q#, you’ll build your own quantum simulator and apply quantum programming techniques to real-world examples including cryptography and chemical analysis.

Quantum computing is the next step in computing power and scalability, with the potential to impact everything from data science to information security. Using qubits, the fundamental unit of quantum information, quantum computers can solve problems beyond the scale of classical computing. Software packages like Microsoft’s Quantum Development Kit and the Q# language are now emerging to give programmers a quick path to exploring quantum development for the first time.

What’s inside

  • The underlying mechanics of how quantum computers work
  • How to simulate qubits in Python
  • Q# and the Microsoft Quantum Developer Kit
  • How to apply quantum algorithms to real-world examples

Learn Quantum Computing with Python and Q# demystifies quantum computing. Using Microsoft’s Quantum Development Kit to abstract away the mathematical complexities, this book builds your understanding of quantum computers by actively developing for them. You’ll start by learning QC fundamentals by creating your own quantum simulator in Python. Soon you’ll move on to using the QDK and the new Q# language for writing and running algorithms very different to those found in classical computing. When you’re finished you’ll be able to apply quantum programming techniques to applications like quantum key distribution, and tackle real-world examples such as chemistry simulations and searching unsorted databases.

DOWNLOAD

Leave a Reply

Your email address will not be published. Required fields are marked *