Hands-On Transfer Learning with Python

Hands-On Transfer Learning with Python

eBook Details:

  • Paperback: 438 pages
  • Publisher: WOW! eBook (August 31, 2018)
  • Language: English
  • ISBN-10: 1788831306
  • ISBN-13: 978-1788831307

eBook Description:

Hands-On Transfer Learning with Python: Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem

Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems.

The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples.

The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP).

By the end of this Hands-On Transfer Learning with Python book, you will be able to implement both DL and transfer learning principles in your own systems.

DOWNLOAD

Leave a Reply

Your email address will not be published. Required fields are marked *