Hands-On Meta Learning with Python
eBook Details:
- Paperback: 226 pages
- Publisher: WOW! eBook (December 31, 2018)
- Language: English
- ISBN-10: 1789534208
- ISBN-13: 978-1789534207
eBook Description:
Hands-On Meta Learning with Python: Explore a diverse set of meta-learning algorithms and techniques to enable human-like cognition for your machine learning models using various Python frameworks
Meta learning is an exciting research trend in machine learning, which enables a model to understand the learning process. Unlike other ML paradigms, with meta learning you can learn from small datasets faster.
Hands-On Meta Learning with Python starts by explaining the fundamentals of meta learning and helps you understand the concept of learning to learn. You will delve into various one-shot learning algorithms, like siamese, prototypical, relation and memory-augmented networks by implementing them in TensorFlow and Keras. As you make your way through the book, you will dive into state-of-the-art meta learning algorithms such as MAML, Reptile, and CAML. You will then explore how to learn quickly with Meta-SGD and discover how you can perform unsupervised learning using meta learning with CACTUs. In the concluding chapters, you will work through recent trends in meta learning such as adversarial meta learning, task agnostic meta learning, and meta imitation learning.
By the end of this Hands-On Meta Learning with Python book, you will be familiar with state-of-the-art meta learning algorithms and able to enable human-like cognition for your machine learning models.