Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

eBook Details:

  • Paperback: 856 pages
  • Publisher: WOW! eBook; 2nd edition (October 15, 2019)
  • Language: English
  • ISBN-10: 1492032646
  • ISBN-13: 978-1492032649

eBook Description:

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition: Updated for TensorFlow 2

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition book shows you how.

  • Explore the machine learning landscape, particularly neural nets
  • Use Scikit-Learn to track an example machine-learning project end-to-end
  • Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
  • Use the TensorFlow library to build and train neural nets
  • Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
  • Learn techniques for training and scaling deep neural nets

By using concrete examples, minimal theory, and two production-ready Python frameworks-Scikit-Learn and TensorFlow-author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.

DOWNLOAD

Leave a Reply

Your email address will not be published. Required fields are marked *