Graph Neural Networks in Action

Graph Neural Networks in Action

eBook Details:

  • Paperback: 392 pages
  • Publisher: WOW! eBook (April 15, 2025)
  • Language: English
  • ISBN-10: 1617299057
  • ISBN-13: 978-1617299056

eBook Description:

Graph Neural Networks in Action: A hands-on guide to powerful graph-based deep learning models.

Graph Neural Networks in Action teaches you to build cutting-edge graph neural networks for recommendation engines, molecular modeling, and more. This comprehensive guide contains coverage of the essential GNN libraries, including PyTorch Geometric, DeepGraph Library, and Alibaba’s GraphScope for training at scale.

In Graph Neural Networks in Action, you will learn how to:

  • Train and deploy a graph neural network
  • Generate node embeddings
  • Use GNNs at scale for very large datasets
  • Build a graph data pipeline
  • Create a graph data schema
  • Understand the taxonomy of GNNs
  • Manipulate graph data with NetworkX

In Graph Neural Networks in Action you’ll learn how to both design and train your models, and how to develop them into practical applications you can deploy to production. Go hands-on and explore relevant real-world projects as you dive into graph neural networks perfect for node prediction, link prediction, and graph classification.

Graphs are a natural way to model the relationships and hierarchies of real-world data. Graph neural networks (GNNs) optimize deep learning for highly-connected data such as in recommendation engines and social networks, along with specialized applications like molecular modeling for drug discovery.

Graph Neural Networks in Action teaches you how to analyze and make predictions on data structured as graphs. You’ll work with graph convolutional networks, attention networks, and auto-encoders to take on tasks like node classification, link prediction, working with temporal data, and object classification. Along the way, you’ll learn the best methods for training and deploying GNNs at scale – all clearly illustrated with well-annotated Python code!

DOWNLOAD
Mountain Peak Campsite Lamp

Leave a Reply

Your email address will not be published. Required fields are marked *