Experimentation for Engineers

Experimentation for Engineers: From A/B testing to Bayesian optimization

eBook Details:

  • Paperback: 248 pages
  • Publisher: WOW! eBook (February 21, 2023)
  • Language: English
  • ISBN-10: 1617298158
  • ISBN-13: 978-1617298158

eBook Description:

Experimentation for Engineers: From A/B testing to Bayesian optimization: Optimize the performance of your systems with practical experiments used by engineers in the world’s most competitive industries.

Experimentation for Engineers: From A/B testing to Bayesian optimization is a toolbox of techniques for evaluating new features and fine-tuning parameters. You’ll start with a deep dive into methods like A/B testing, and then graduate to advanced techniques used to measure performance in industries such as finance and social media. Learn how to evaluate the changes you make to your system and ensure that your testing doesn’t undermine revenue or other business metrics. By the time you’re done, you’ll be able to seamlessly deploy experiments in production while avoiding common pitfalls.

Does my software really work? Did my changes make things better or worse? Should I trade features for performance? Experimentation is the only way to answer questions like these. This unique book reveals sophisticated experimentation practices developed and proven in the world’s most competitive industries that will help you enhance machine learning systems, software applications, and quantitative trading solutions.

In Experimentation for Engineers: From A/B testing to Bayesian optimization you will learn how to:

  • Design, run, and analyze an A/B test
  • Break the “feedback loops” cause by periodic retraining of ML models
  • Increase experimentation rate with multi-armed bandits
  • Tune multiple parameters experimentally with Bayesian optimization
  • Clearly define business metrics used for decision making
  • Identify and avoid the common pitfalls of experimentation

Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimizing software systems. You’ll start by learning the limits of A/B testing, and then graduate to advanced experimentation strategies that take advantage of machine learning and probabilistic methods. The skills you’ll master in this practical guide will help you minimize the costs of experimentation and quickly reveal which approaches and features deliver the best business results.

DOWNLOAD

Leave a Reply

Your email address will not be published. Required fields are marked *